Spherical normal forms for resonant saddle points in \mathbb{C}^{2} Bifurcation of Dynamical Systems and Numerics, Zagreb

Loïc Teyssier (Université de Strasbourg)

May $10^{\text {th }}, 2023$

Context

Local holomorphic dynamical systems in the complex plane \mathbb{C}^{2}

Theory and actual computation / decision regarding:

Context

Local holomorphic dynamical systems in the complex plane \mathbb{C}^{2}

Theory and actual computation / decision regarding:

- normal forms of foliations \mathcal{F}_{X} (=phase-portrait of vector field X)

Context

Local holomorphic dynamical systems in the complex plane \mathbb{C}^{2}

Theory and actual computation / decision regarding:

- normal forms of foliations \mathcal{F}_{X} (=phase-portrait of vector field X)

■ integrability of foliations \mathcal{F}_{X} (=Liouvillian first-integral for X)

A bit of zoology

Reduced singularities

$$
x(x, y)=\left(\lambda_{1} x+\cdots\right) \frac{\partial}{\partial x}+\left(\lambda_{2} y+\cdots\right) \frac{\partial}{\partial y}, \lambda_{2} \neq 0
$$

Eigenratio $\lambda:=\lambda_{1} / \lambda_{2}$

A bit of zoology

Reduced singularities

$$
x(x, y)=\left(\lambda_{1} x+\cdots\right) \frac{\partial}{\partial x}+\left(\lambda_{2} y+\cdots\right) \frac{\partial}{\partial y}, \lambda_{2} \neq 0
$$

Eigenratio $\lambda:=\lambda_{1} / \lambda_{2}$

II $\lambda \notin \mathbb{R} \Longrightarrow X$ linearizable by analytic change of coordinates

$$
\left(\exists \Psi \in \operatorname{Diff}\left(\mathbb{C}^{2}, 0\right)\right) \Psi^{*} X:=\mathrm{D} \Psi^{-1}(X \circ \Psi)=\lambda_{1} x \frac{\partial}{\partial x}+\lambda_{2} y \frac{\partial}{\partial y}
$$

A bit of zoology

Reduced singularities

$$
x(x, y)=\left(\lambda_{1} x+\cdots\right) \frac{\partial}{\partial x}+\left(\lambda_{2} y+\cdots\right) \frac{\partial}{\partial y}, \lambda_{2} \neq 0
$$

Eigenratio $\lambda:=\lambda_{1} / \lambda_{2}$
$\boxed{1} \lambda \notin \mathbb{R} \Longrightarrow X$ linearizable by analytic change of coordinates

$$
\left(\exists \Psi \in \operatorname{Diff}\left(\mathbb{C}^{2}, 0\right)\right) \Psi^{*} X:=\mathrm{D} \Psi^{-1}(X \circ \Psi)=\lambda_{1} x \frac{\partial}{\partial x}+\lambda_{2} y \frac{\partial}{\partial y}
$$

■ $\lambda>0 \Longrightarrow X$ conjugate to polynomial vector field (Poincaré-Dulac)

A bit of zoology

Reduced singularities

$$
x(x, y)=\left(\lambda_{1} x+\cdots\right) \frac{\partial}{\partial x}+\left(\lambda_{2} y+\cdots\right) \frac{\partial}{\partial y}, \lambda_{2} \neq 0
$$

Eigenratio $\lambda:=\lambda_{1} / \lambda_{2}$
■ $\lambda \notin \mathbb{R} \Longrightarrow X$ linearizable by analytic change of coordinates

$$
\left(\exists \Psi \in \operatorname{Diff}\left(\mathbb{C}^{2}, 0\right)\right) \Psi^{*} X:=\mathrm{D} \Psi^{-1}(X \circ \psi)=\lambda_{1} x \frac{\partial}{\partial x}+\lambda_{2} y \frac{\partial}{\partial y}
$$

■ $\lambda>0 \Longrightarrow X$ conjugate to polynomial vector field (Poincaré-Dulac)
3 $\lambda=0$: saddle-node

A bit of zoology

Reduced singularities

$$
x(x, y)=\left(\lambda_{1} x+\cdots\right) \frac{\partial}{\partial x}+\left(\lambda_{2} y+\cdots\right) \frac{\partial}{\partial y}, \lambda_{2} \neq 0
$$

Eigenratio $\lambda:=\lambda_{1} / \lambda_{2}$
■ $\lambda \notin \mathbb{R} \Longrightarrow X$ linearizable by analytic change of coordinates

$$
\left(\exists \Psi \in \operatorname{Diff}\left(\mathbb{C}^{2}, 0\right)\right) \Psi^{*} X:=\mathrm{D} \Psi^{-1}(X \circ \psi)=\lambda_{1} x \frac{\partial}{\partial x}+\lambda_{2} y \frac{\partial}{\partial y}
$$

【 $\lambda>0 \Longrightarrow X$ conjugate to polynomial vector field (Poincaré-Dulac)
3 $\lambda=0$: saddle-node
(4) $\lambda \in \mathbb{Q}_{<0}$: linearizable or resonant saddle

A bit of zoology

Reduced singularities

$$
x(x, y)=\left(\lambda_{1} x+\cdots\right) \frac{\partial}{\partial x}+\left(\lambda_{2} y+\cdots\right) \frac{\partial}{\partial y}, \lambda_{2} \neq 0
$$

Eigenratio $\lambda:=\lambda_{1} / \lambda_{2}$
■ $\lambda \notin \mathbb{R} \Longrightarrow X$ linearizable by analytic change of coordinates

$$
\left(\exists \Psi \in \operatorname{Diff}\left(\mathbb{C}^{2}, 0\right)\right) \Psi^{*} X:=\mathrm{D} \Psi^{-1}(X \circ \psi)=\lambda_{1} x \frac{\partial}{\partial x}+\lambda_{2} y \frac{\partial}{\partial y}
$$

■ $\lambda>0 \Longrightarrow X$ conjugate to polynomial vector field (Poincaré-Dulac)
3 $\lambda=0$: saddle-node
$4 \lambda \in \mathbb{Q}_{<0}$: linearizable or resonant saddle
■ $\lambda \in \mathbb{R}<0 \backslash \mathbb{Q}$: quasi-resonant saddles, too complicated

Aims

General aim

Compute simple unique forms (normal forms) for X up to $\Psi \in \operatorname{Diff}\left(\mathbb{C}^{2}, 0\right)$ and decide if X is integrable

Aims

General aim

Compute simple unique forms (normal forms) for X up to $\Psi \in \operatorname{Diff}\left(\mathbb{C}^{2}, 0\right)$ and decide if X is integrable

More modest aim
Describe normal forms, compute their finite jets and semi-decide integrability

Aims

General aim

Compute simple unique forms (normal forms) for X up to $\Psi \in \operatorname{Diff}\left(\mathbb{C}^{2}, 0\right)$ and decide if X is integrable

More modest aim

Describe normal forms, compute their finite jets and semi-decide integrability

Actual aim
Do that for reduced singularities

Aims

General aim

Compute simple unique forms (normal forms) for X up to $\Psi \in \operatorname{Diff}\left(\mathbb{C}^{2}, 0\right)$ and decide if X is integrable

More modest aim

Describe normal forms, compute their finite jets and semi-decide integrability

Actual aim
Do that for reduced resonant saddle singularities

What is known

Theorem (Poincaré-Dulac 1904 / Bruno 1980)

Formal normal forms for reduced, resonant singularities

$$
\begin{gathered}
\lambda=-p / q \text { with } p \wedge q=1 \text { or }(p, q)=(0,1) \\
x \hat{\sim}:=P(u)\left(x u^{k} \frac{\partial}{\partial x}+\left(1+\mu u^{k}\right)\left(-p x \frac{\partial}{\partial x}+q y \frac{\partial}{\partial y}\right)\right)
\end{gathered}
$$

(orbital) $k \in \mathbb{Z}_{>0}, \mu \in \mathbb{C} \quad$ (temporal) $P \in \mathbb{C}[u]_{\leq k}$
resonant monomial $u=u(x, y):=x^{q} y^{p}$

What is known

Theorem (Loray 2004 / Schäfke-Teyssier 2015)
Analytic normal forms for saddle-nodes with 2 separatrices

What is known

Theorem (Loray 2004 / Schäfke-Teyssier 2015)
Analytic normal forms for saddle-nodes with 2 separatrices
II Form unique up to $G L_{2}(\mathbb{C})$

$$
x \sim \frac{1}{1+P G}\left(\hat{x}+R x y \frac{\partial}{\partial y}\right)
$$

(orbital) $R \quad$ (temporal) $G \in \mathbb{C}\left\{y x^{\sigma}\right\}[x]_{<k}, \sigma+\mu \notin \mathbb{R} \leq 0$

What is known

Theorem (Loray 2004 / Schäfke-Teyssier 2015)
Analytic normal forms for saddle-nodes with 2 separatrices
1 Form unique up to $G L_{2}(\mathbb{C})$

$$
x \sim \frac{1}{1+P G}\left(\hat{x}+R x y \frac{\partial}{\partial y}\right)
$$

(orbital) $R \quad$ (temporal) $G \in \mathbb{C}\left\{y x^{\sigma}\right\}[x]_{<k}, \sigma+\mu \notin \mathbb{R} \leq 0$
[IItegrability $\Longleftrightarrow R \in y^{d} \mathbb{C}[x]$ (Bernoulli equation)

What is known

Theorem (Loray 2004 / Schäfke-Teyssier 2015)
Analytic normal forms for saddle-nodes with 2 separatrices
1 Form unique up to $G L_{2}(\mathbb{C})$

$$
x \sim \frac{1}{1+P G}\left(\hat{x}+R x y \frac{\partial}{\partial y}\right)
$$

(orbital) $R \quad$ (temporal) $G \in \mathbb{C}\left\{y x^{\sigma}\right\}[x]_{<k}, \sigma+\mu \notin \mathbb{R} \leq 0$
[2 Integrability $\Longleftrightarrow R \in y^{d} \mathbb{C}[x]$ (Bernoulli equation)

Remark

It is possible to compute symbolically finite jets of the normal form, hence integrability is semi-decidable

What is (almost) known

Écalle 2005

There exists a universal family SNF (spherical normal forms), depending on a twist parameter and whose elements are obtained by summing twisted resurgent monomials, that is in correspondence with orbital analytic classes of resonant foliations

What is (almost) known

Écalle 2005

There exists a universal family SNF (spherical normal forms), depending on a twist parameter and whose elements are obtained by summing twisted resurgent monomials, that is in correspondence with orbital analytic classes of resonant foliations

Remark

It is not possible to extract from his work an explicit expression for SNF

What is not known

Remaining difficult cases

What is not known

Remaining difficult cases

■ Quasi-resonant saddle points (Loray: simple forms but not unique nor computable)

What is not known

Remaining difficult cases

■ Quasi-resonant saddle points (Loray: simple forms but not unique nor computable)

- Saddles nodes with only 1 separatrix

Hypothesis on X

In the rest of the talk

FOL := \{all such $\left.\mathcal{F}_{X}\right\}$

Hypothesis on X

In the rest of the talk

1 1:1 saddle

$$
x=-x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}+\cdots \quad \lambda=1
$$

FOL $:=\left\{\right.$ all such $\left.\mathcal{F}_{X}\right\}$

Hypothesis on X

In the rest of the talk

$11: 1$ saddle

$$
x=-x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}+\cdots \quad \lambda=1
$$

2 non-linearizable and most simple formal model

$$
\begin{gathered}
x \hat{\sim} x u \frac{\partial}{\partial x}+\left(-x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}\right), u=x y \\
\text { FOL }:=\left\{\text { all such } \mathcal{F}_{X}\right\}
\end{gathered}
$$

Quotient FOL/ Diff(Cㄴ,0)

Quotient FOL/ Diff(C $\left.\mathbb{C}^{2}, 0\right)$

Heuristics

analytic class of $\mathcal{F}_{X}=$ analytic class of leaf space of \mathcal{F}_{X}

Leaf space of \mathcal{F}_{X} : formal normal form case

■ $X=x u \frac{\partial}{\partial x}+\left(-x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}\right)$ has first-integral $H=y \exp \frac{1}{u}$

Leaf space of \mathcal{F}_{X} : formal normal form case

- $X=x u \frac{\partial}{\partial x}+\left(-x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}\right)$ has first-integral $H=y \exp \frac{1}{u}$
- $\stackrel{\text { def }}{\Longleftrightarrow} X \cdot H=0$

Leaf space of \mathcal{F}_{X} : formal normal form case

- $X=x u \frac{\partial}{\partial x}+\left(-x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}\right)$ has first-integral $H=y \exp \frac{1}{u}$
$\stackrel{\text { def }}{\Longleftrightarrow} X \cdot H=0$
$■ \Longleftrightarrow H$ constant along trajectories of X

Leaf space of \mathcal{F}_{X} : formal normal form case

- $X=x u \frac{\partial}{\partial x}+\left(-x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}\right)$ has first-integral $H=y \exp \frac{1}{u}$
$\stackrel{\text { def }}{\Longleftrightarrow} X \cdot H=0$
■ $\Longleftrightarrow H$ constant along trajectories of X
$■ \Longleftrightarrow$ each leaf of \mathcal{F}_{X} is a level set $H^{-1}(h)$

Leaf space of \mathcal{F}_{X} : formal normal form case

- $X=x u \frac{\partial}{\partial x}+\left(-x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}\right)$ has first-integral $H=y \exp \frac{1}{u}$
$\stackrel{\text { def }}{\Longleftrightarrow} X \cdot H=0$
■ $\Longleftrightarrow H$ constant along trajectories of X
- \Longleftrightarrow each leaf of \mathcal{F}_{X} is a level set $H^{-1}(h)$

■ \Longleftrightarrow values h of H parameterize the leaf space Ω_{X}

Leaf space of \mathcal{F}_{X} : formal normal form case

- $X=x u \frac{\partial}{\partial x}+\left(-x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}\right)$ has first-integral $H=y \exp \frac{1}{u}$
$\stackrel{\text { def }}{\Longleftrightarrow} X \cdot H=0$
$■ \Longleftrightarrow H$ constant along trajectories of X
- \Longleftrightarrow each leaf of \mathcal{F}_{X} is a level set $H^{-1}(h)$

■ \Longleftrightarrow values h of H parameterize the leaf space Ω_{X}

- $H\left(\mathbb{C}^{2} \backslash\{u=0\}\right)=\mathbb{C}^{\times}$and $\{u=0\}$ corresponds to $0, \infty$ (non-separable)

Leaf space of \mathcal{F}_{X} : general case

2 sectors in u-space are needed

Leaf space of \mathcal{F}_{X} : general case

2 sectors in u-space are needed

$$
V^{ \pm}:=\left\{u:\left|\arg u \pm \frac{\pi}{2}\right|<\frac{5 \pi}{8}\right\}
$$

Leaf space of \mathcal{F}_{X} : general case

2 sectors in u-space are needed

$$
V^{ \pm}:=\left\{u:\left|\arg u \pm \frac{\pi}{2}\right|<\frac{5 \pi}{8}\right\}
$$

- X admits first-integrals $H^{ \pm}=H \exp N^{ \pm}$and $H^{ \pm}\left(V^{ \pm} \times(\mathbb{C}, 0)\right)=\mathbb{C}^{\times}$ \rightarrow sectorial normalization

Leaf space of \mathcal{F}_{X} : general case

- 2 sectors in u-space are needed

$$
V^{ \pm}:=\left\{u:\left|\arg u \pm \frac{\pi}{2}\right|<\frac{5 \pi}{8}\right\}
$$

- X admits first-integrals $H^{ \pm}=H \exp N^{ \pm}$and $H^{ \pm}\left(V^{ \pm} \times(\mathbb{C}, 0)\right)=\mathbb{C}^{\times}$ \rightarrow sectorial normalization
- a leaf crossing both sectors induces an identification in Ω_{X}

Leaf space of \mathcal{F}_{X} : general case

- 2 sectors in u-space are needed

$$
V^{ \pm}:=\left\{u:\left|\arg u \pm \frac{\pi}{2}\right|<\frac{5 \pi}{8}\right\}
$$

- X admits first-integrals $H^{ \pm}=H \exp N^{ \pm}$and $H^{ \pm}\left(V^{ \pm} \times(\mathbb{C}, 0)\right)=\mathbb{C}^{\times}$ \rightarrow sectorial normalization
- a leaf crossing both sectors induces an identification in Ω_{X}
- that happens in neighborhoods of 0 and ∞

Quotient FOL/ Diff(Cㄴ,0)

Quotient FOL/ Diff($\left.\mathbb{C}^{2}, 0\right)$

Theorem (Martinet-Ramis 1983)
The mapping
MR : FOL $/ \operatorname{Diff}^{(\mathbb{C} 2,0)} \longrightarrow\left(\operatorname{Diff}(\mathbb{C}, 0)_{\mathrm{Id}} \times \operatorname{Diff}(\overline{\mathbb{C}}, \infty)_{\mathrm{Id}}\right) / \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{C}^{\times}$ $[\mathcal{F}] \longmapsto\left[\left(\psi^{0}, \psi^{\infty}\right)\right]$
is well defined and bijective

Quotient FOL/ Diff($\left.\mathbb{C}^{2}, 0\right)$

Theorem (Martinet-Ramis 1983)

The mapping
MR : FOL $/ \operatorname{Diff}^{\left(\mathbb{C}^{2}, 0\right)} \longrightarrow\left(\operatorname{Diff}(\mathbb{C}, 0)_{\mathrm{Id}} \times \operatorname{Diff}(\overline{\mathbb{C}}, \infty)_{\mathrm{Id}}\right) / \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{C}^{\times}$

$$
[\mathcal{F}] \longmapsto\left[\left(\psi^{0}, \psi^{\infty}\right)\right]
$$

is well defined and bijective

Remark

Quotient FOL/ Diff($\left.\mathbb{C}^{2}, 0\right)$

Theorem (Martinet-Ramis 1983)

The mapping
MR : FOL $/ \operatorname{Diff}^{\left(\mathbb{C}^{2}, 0\right)} \longrightarrow\left(\operatorname{Diff}(\mathbb{C}, 0)_{\mathrm{Id}} \times \operatorname{Diff}(\overline{\mathbb{C}}, \infty)_{\mathrm{Id}}\right) / \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{C}^{\times}$

$$
[\mathcal{F}] \longmapsto\left[\left(\psi^{0}, \psi^{\infty}\right)\right]
$$

is well defined and bijective

Remark

$1 \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{C}^{\times} \supset \operatorname{Aut}\left(\Omega_{X}\right)$ as an abstract non-Hausdorff complex curve

Quotient FOL/ $\operatorname{Diff}\left(\mathbb{C}^{2}, 0\right)$

Theorem (Martinet-Ramis 1983)

The mapping
MR : FOL $/ \operatorname{Diff}^{\left(\mathbb{C}^{2}, 0\right)} \longrightarrow\left(\operatorname{Diff}(\mathbb{C}, 0)_{\mathrm{Id}} \times \operatorname{Diff}(\overline{\mathbb{C}}, \infty)_{\mathrm{Id}}\right) / \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{C}^{\times}$

$$
[\mathcal{F}] \longmapsto\left[\left(\psi^{0}, \psi^{\infty}\right)\right]
$$

is well defined and bijective

Remark

$1 \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{C}^{\times} \supset$ Aut $\left(\Omega_{X}\right)$ as an abstract non-Hausdorff complex curve
2 Well-defined and injective: relatively easy

Quotient FOL/ $\operatorname{Diff}\left(\mathbb{C}^{2}, 0\right)$

Theorem (Martinet-Ramis 1983)

The mapping
MR : FOL $/ \operatorname{Diff}^{\left(\mathbb{C}^{2}, 0\right)} \longrightarrow\left(\operatorname{Diff}(\mathbb{C}, 0)_{\mathrm{Id}} \times \operatorname{Diff}(\overline{\mathbb{C}}, \infty)_{\mathrm{Id}}\right) / \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{C}^{\times}$

$$
[\mathcal{F}] \longmapsto\left[\left(\psi^{0}, \psi^{\infty}\right)\right]
$$

is well defined and bijective

Remark

$1 \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{C}^{\times} \supset$ Aut $\left(\Omega_{X}\right)$ as an abstract non-Hausdorff complex curve
2 Well-defined and injective: relatively easy
3 Surjective: difficult \rightarrow inverse problem

Inverse problem: «abstract» realization

1 We start with $\overline{\mathbb{C}} \coprod \overline{\mathbb{C}} /\left(\psi^{0}, \psi^{\infty}\right)$, to be synthesized

Inverse problem: «abstract» realization

1 We start with $\overline{\mathbb{C}} \coprod \overline{\mathbb{C}} /\left(\psi^{0}, \psi^{\infty}\right)$, to be synthesized
2 We equip $\mathcal{V}^{ \pm}:=V^{ \pm} \times(\mathbb{C}, 0)$ with $x u \frac{\partial}{\partial x}+\left(-x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}\right)$ and the leaf coordinate $h \longleftrightarrow H=y \exp \frac{1}{u}$

Inverse problem: «abstract» realization

1 We start with $\overline{\mathbb{C}} \coprod \overline{\mathbb{C}} /\left(\psi^{0}, \psi^{\infty}\right)$, to be synthesized
2 We equip $\mathcal{V}^{ \pm}:=V^{ \pm} \times(\mathbb{C}, 0)$ with $x u \frac{\partial}{\partial x}+\left(-x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}\right)$ and the leaf coordinate $h \longleftrightarrow H=y \exp \frac{1}{u}$
3 The manifold \mathcal{M} is obtained by gluing \mathcal{V}^{+}and \mathcal{V}^{-}in h-space by $\left(\psi^{0}, \psi^{\infty}\right)$

Inverse problem: «abstract» realization

1 We start with $\overline{\mathbb{C}} \coprod \overline{\mathbb{C}} /\left(\psi^{0}, \psi^{\infty}\right)$, to be synthesized
2 We equip $\mathcal{V}^{ \pm}:=V^{ \pm} \times(\mathbb{C}, 0)$ with $x u \frac{\partial}{\partial x}+\left(-x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}\right)$ and the leaf coordinate $h \longleftrightarrow H=y \exp \frac{1}{u}$
3 The manifold \mathcal{M} is obtained by gluing \mathcal{V}^{+}and \mathcal{V}^{-}in h-space by $\left(\psi^{0}, \psi^{\infty}\right)$
$4 \Longrightarrow \mathcal{M}$ is foliated by some \mathcal{F}

Inverse problem: «abstract» realization

1 We start with $\overline{\mathbb{C}} \coprod \overline{\mathbb{C}} /\left(\psi^{0}, \psi^{\infty}\right)$, to be synthesized
2 We equip $\mathcal{V}^{ \pm}:=V^{ \pm} \times(\mathbb{C}, 0)$ with $x u \frac{\partial}{\partial x}+\left(-x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}\right)$ and the leaf coordinate $h \leftrightarrow H=y \exp \frac{1}{u}$
3 The manifold \mathcal{M} is obtained by gluing \mathcal{V}^{+}and \mathcal{V}^{-}in h-space by $\left(\psi^{0}, \psi^{\infty}\right)$
$4 \Longrightarrow \mathcal{M}$ is foliated by some \mathcal{F}
5 Newlander-Niremberg: $\mathcal{M} \simeq\left(\mathbb{C}^{2}, 0\right)$, and $\mathcal{F} \in \mathrm{FOL}$

Inverse problem: «abstract» realization

Technical points

Inverse problem: «abstract» realization

Technical points

\square "The manifold \mathcal{M} is obtained by gluing \mathcal{V}^{+}and \mathcal{V}^{-}in h-space by $\left(\psi^{0}, \psi^{\infty}\right)$ "

Inverse problem: «abstract» realization

Technical points

\square "The manifold \mathcal{M} is obtained by gluing \mathcal{V}^{+}and \mathcal{V}^{-}in h-space by $\left(\psi^{0}, \psi^{\infty}\right)$ "
\longrightarrow Need to control the size of $H\left(\mathcal{V}^{+} \cap \mathcal{V}^{-}\right)$

Inverse problem: «abstract» realization

Technical points

\square "The manifold \mathcal{M} is obtained by gluing \mathcal{V}^{+}and \mathcal{V}^{-}in h-space by $\left(\psi^{0}, \psi^{\infty}\right)$ "
\longrightarrow Need to control the size of $H\left(\mathcal{V}^{+} \cap \mathcal{V}^{-}\right)$
\longrightarrow Constraint on the size of $\mathcal{V}^{+} \cap \mathcal{V}^{-} \cap\left(\mathbb{C}^{2}, 0\right)$

Inverse problem: «abstract» realization

Technical points

\square "The manifold \mathcal{M} is obtained by gluing \mathcal{V}^{+}and \mathcal{V}^{-}in h-space by $\left(\psi^{0}, \psi^{\infty}\right)$ "
\longrightarrow Need to control the size of $H\left(\mathcal{V}^{+} \cap \mathcal{V}^{-}\right)$
\longrightarrow Constraint on the size of $\mathcal{V}^{+} \cap \mathcal{V}^{-} \cap\left(\mathbb{C}^{2}, 0\right)$

- 'Newlander-Niremberg: $\mathcal{M} \simeq\left(\mathbb{C}^{2}, 0\right)$, and $\mathcal{F} \in$ FOL"

Inverse problem: «abstract» realization

Technical points

\square "The manifold \mathcal{M} is obtained by gluing \mathcal{V}^{+}and \mathcal{V}^{-}in h-space by $\left(\psi^{0}, \psi^{\infty}\right)$ "
\longrightarrow Need to control the size of $H\left(\mathcal{V}^{+} \cap \mathcal{V}^{-}\right)$
\longrightarrow Constraint on the size of $\mathcal{V}^{+} \cap \mathcal{V}^{-} \cap\left(\mathbb{C}^{2}, 0\right)$

- 'Newlander-Niremberg: $\mathcal{M} \simeq\left(\mathbb{C}^{2}, 0\right)$, and $\mathcal{F} \in$ FOL"
\longrightarrow No control on the «shape» of \mathcal{F}

Technical points

\square "The manifold \mathcal{M} is obtained by gluing \mathcal{V}^{+}and \mathcal{V}^{-}in h-space by $\left(\psi^{0}, \psi^{\infty}\right)$ "
\longrightarrow Need to control the size of $H\left(\mathcal{V}^{+} \cap \mathcal{V}^{-}\right)$
\longrightarrow Constraint on the size of $\mathcal{V}^{+} \cap \mathcal{V}^{-} \cap\left(\mathbb{C}^{2}, 0\right)$

- 'Newlander-Niremberg: $\mathcal{M} \simeq\left(\mathbb{C}^{2}, 0\right)$, and $\mathcal{F} \in$ FOL"
\longrightarrow No control on the «shape» of \mathcal{F}
\longrightarrow No privileged choice (normal form)

Inverse problem: «concrete» realization

Remedies

Remedies

■ Introduce a twist parameter $c \gg 1$ to control $H\left(\mathcal{V}^{+} \cap \mathcal{V}^{-}\right)$and change the formal model:

$$
\begin{gathered}
x_{0}:=x u \frac{\partial}{\partial x}+c\left(1-u^{2}\right)\left(-x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}\right) \\
H=y \exp \left(\frac{c}{u}+c u\right) \quad \operatorname{diam}\left(H\left(\mathcal{V}^{+} \cap \mathcal{V}^{-}\right)\right)=O\left(\mathrm{e}^{-c}\right)
\end{gathered}
$$

Inverse problem: «concrete» realization

Remedies

■ Introduce a twist parameter $c \gg 1$ to control $H\left(\mathcal{V}^{+} \cap \mathcal{V}^{-}\right)$and change the formal model:

$$
\begin{gathered}
X_{0}:=x u \frac{\partial}{\partial x}+c\left(1-u^{2}\right)\left(-x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}\right) \\
H=y \exp \left(\frac{c}{u}+c u\right) \quad \operatorname{diam}\left(H\left(\mathcal{V}^{+} \cap \mathcal{V}^{-}\right)\right)=O\left(\mathrm{e}^{-c}\right)
\end{gathered}
$$

- A holomorphic fixed-point allows to control the produced foliation

1 Let $\left(\psi^{0}, \psi^{\infty}\right) \in \operatorname{Diff}(\mathbb{C}, 0)_{\text {Id }} \times \operatorname{Diff}(\mathbb{C}, 0)_{\text {Id }}$ be given. Choose c so that $H\left(\mathcal{V}^{+} \cap \mathcal{V}^{-}\right) \subset$ domain $\left(\psi^{0, \infty}\right)$

1 Let $\left(\psi^{0}, \psi^{\infty}\right) \in \operatorname{Diff}(\mathbb{C}, 0)_{\text {Id }} \times \operatorname{Diff}(\mathbb{C}, 0)_{\text {Id }}$ be given. Choose c so that $H\left(\mathcal{V}^{+} \cap \mathcal{V}^{-}\right) \subset$ domain $\left(\psi^{0, \infty}\right)$
2 Synthesize by fixed-point $N^{ \pm} \underline{\text { bounded }}$ on $V^{ \pm} \times \mathbb{C}$ so that

$$
\left\{\begin{array}{l}
H^{+}=\Psi^{0}\left(H^{-}\right) \\
H^{-}=\Psi^{\infty}\left(H^{+}\right)
\end{array} \quad H^{ \pm}=H \exp N^{ \pm}\right.
$$

Inverse problem: «concrete» realization

1 Let $\left(\psi^{0}, \psi^{\infty}\right) \in \operatorname{Diff}(\mathbb{C}, 0)_{\text {Id }} \times \operatorname{Diff}(\mathbb{C}, 0)_{\text {Id }}$ be given. Choose c so that $H\left(\mathcal{V}^{+} \cap \mathcal{V}^{-}\right) \subset$ domain $\left(\psi^{0, \infty}\right)$

$$
\left\{\begin{array}{l}
H^{+}=\Psi^{0}\left(H^{-}\right) \\
H^{-}=\Psi^{\infty}\left(H^{+}\right)
\end{array} \quad H^{ \pm}=H \exp N^{ \pm}\right.
$$

3 Recover

$$
R:=\frac{x u \frac{\partial}{\partial x} N^{ \pm}}{1+\left(-x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}\right) N^{ \pm}} \in \mathbb{C}\{u, y\}
$$

Inverse problem: «concrete» realization

1 Let $\left(\psi^{0}, \psi^{\infty}\right) \in \operatorname{Diff}(\mathbb{C}, 0)_{\text {Id }} \times \operatorname{Diff}(\mathbb{C}, 0)_{\text {Id }}$ be given. Choose c so that $H\left(\mathcal{V}^{+} \cap \mathcal{V}^{-}\right) \subset$ domain $\left(\psi^{0, \infty}\right)$

$$
\left\{\begin{array}{l}
H^{+}=\Psi^{0}\left(H^{-}\right) \\
H^{-}=\Psi^{\infty}\left(H^{+}\right)
\end{array} \quad H^{ \pm}=H \exp N^{ \pm}\right.
$$

3 Recover

$$
R:=\frac{x u \frac{\partial}{\partial x} N^{ \pm}}{1+\left(-x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}\right) N^{ \pm}} \in \mathbb{C}\{u, y\}
$$

4 Bounds on growth $\Longrightarrow R=u y\left(r_{0}(y)+u r_{1}(y)\right)$ for $r_{j} \in \mathbb{C}\{y\}$

Analytic «spherical» normal forms

Theorem (Teyssier 2022)
 Let $\mathcal{F}_{X} \in F O L$ be given.

Analytic «spherical» normal forms

Theorem (Teyssier 2022)
Let $\mathcal{F}_{X} \in F O L$ be given.
1 Form unique up to $G L_{2}(\mathbb{C})$

$$
x \sim \frac{1}{1+G}\left(x u \frac{\partial}{\partial x}+\left(c\left(1-u^{2}\right)+R\right)\left(-x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}\right)\right)
$$

(orbital) $R \quad$ (temporal) $G \in u y \mathbb{C}\{y\}[u]_{\leq 1}$

Analytic «spherical» normal forms

Theorem (Teyssier 2022)
Let $\mathcal{F}_{X} \in F O L$ be given.
1 Form unique up to $G L_{2}(\mathbb{C})$

$$
x \sim \frac{1}{1+G}\left(x u \frac{\partial}{\partial x}+\left(c\left(1-u^{2}\right)+R\right)\left(-x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}\right)\right)
$$

(orbital) $R \quad$ (temporal) $G \in u y \mathbb{C}\{y\}[u]_{\leq 1}$
22 Integrability $\Longleftrightarrow R \in y^{d} \mathbb{C}[u]_{\leq 1}$ (Bernoulli equation)

Analytic «spherical» normal forms

Remark

Analytic «spherical» normal forms

Remark

1 Normal form defined on $\overline{\mathbb{C}} \times(\mathbb{C}, 0)$: semi-global

Analytic «spherical» normal forms

Remark

1 Normal form defined on $\overline{\mathbb{C}} \times(\mathbb{C}, 0)$: semi-global
2 Finite jets are computable \Longrightarrow integrability is semi-decidable

$$
X \xrightarrow{\text { Dulac }} X_{\text {prepared }} \longrightarrow X_{R}
$$

Analytic «spherical»normal forms

Remark

1 Normal form defined on $\overline{\mathbb{C}} \times(\mathbb{C}, 0)$: semi-global
2 Finite jets are computable \Longrightarrow integrability is semi-decidable

Dulac

$$
X \quad \longrightarrow \quad X_{\text {prepared }} \longrightarrow X_{R}
$$

3 Triangular process, computable symbolically for all n

$$
\begin{aligned}
X_{\text {prepared }} & =x u \frac{\partial}{\partial x}+(1+u y A(x, y))\left(-x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}\right) \\
X_{R} & =x u \frac{\partial}{\partial x}+\left(c\left(1-u^{2}\right)+u y R(u, y)\right)\left(-x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}\right) \\
A & =\sum_{n} a_{n}(x) y^{n} \longmapsto R=\sum_{n}\left(\alpha_{n}+\beta_{n} u\right) y^{n}
\end{aligned}
$$

What about the temporal part?

- $X_{\text {spherical }}=\frac{1}{1+G} X_{R}$ but so far only $U X_{R}$

What about the temporal part?

- $X_{\text {spherical }}=\frac{1}{1+G} X_{R}$ but so far only $U X_{R}$
- Going from $U X_{R}$ to $\frac{1}{1+G} X_{R}$ by $\Phi_{X_{R}}^{T}$:

$$
X_{R} \cdot T=G+1-\frac{1}{U}
$$

What about the temporal part?

- $X_{\text {spherical }}=\frac{1}{1+G} X_{R}$ but so far only $U X_{R}$
- Going from $U X_{R}$ to $\frac{1}{1+G} X_{R}$ by $\Phi_{X_{R}}^{T}$:

$$
X_{R} \cdot T=G+1-\frac{1}{U}
$$

Proposition (Period operator and cohomological equations)

What about the temporal part?

- $X_{\text {spherical }}=\frac{1}{1+G} X_{R}$ but so far only $U X_{R}$
- Going from $U X_{R}$ to $\frac{1}{1+G} X_{R}$ by $\Phi_{X_{R}}^{T}$:

$$
X_{R} \cdot T=G+1-\frac{1}{U}
$$

Proposition (Period operator and cohomological equations)

Formal action

$$
\mathbb{C} \stackrel{\text { cst }}{\longrightarrow} \mathbb{C}[[x, y]] \xrightarrow{X_{R}} \mathbb{C}[[x, y]] \xrightarrow{\square} \mathbb{C}[u]_{\leq 1}
$$

What about the temporal part?

- $X_{\text {spherical }}=\frac{1}{1+G} X_{R}$ but so far only $U X_{R}$
- Going from $U X_{R}$ to $\frac{1}{1+G} X_{R}$ by $\Phi_{X_{R}}^{T}$:

$$
X_{R} \cdot T=G+1-\frac{1}{U}
$$

Proposition (Period operator and cohomological equations)

 Analytic action$$
\mathbb{C} \stackrel{\text { cst }}{ } \quad \mathbb{C}\{x, y\} \xrightarrow{X_{R} .} \operatorname{ker} \Pi \xrightarrow{\mathfrak{T}_{R}} h \mathbb{C}\{h\} \times \frac{1}{h} \mathbb{C}\left\{\frac{1}{h}\right\}
$$

Period operator $\mathfrak{T}_{R}(f)=\left(\varphi^{0}, \varphi^{\infty}\right)$

What about the temporal part?

- $X_{\text {spherical }}=\frac{1}{1+G} X_{R}$ but so far only $U X_{R}$
- Going from $U X_{R}$ to $\frac{1}{1+G} X_{R}$ by $\Phi_{X_{R}}^{T}$:

$$
X_{R} \cdot T=G+1-\frac{1}{U}
$$

Proposition (Period operator and cohomological equations)

Any $f \in \mathbb{C}\{x, y\}$ writes uniquely as

$$
f=P+G+X_{R} \cdot F, \begin{cases}P & \in \mathbb{C}[u]_{\leq 1} \\ G & \in y u \mathbb{C}\{y\}[u]_{\leq 1} \\ F & \in \mathbb{C}\{x, y\}\end{cases}
$$

Applications and further work

- Isomodulic deformations $c \mapsto R(c)$

Applications and further work

- Isomodulic deformations $c \mapsto R(c)$
\rightarrow To recognize Écalle's SNF

Applications and further work

- Isomodulic deformations $c \mapsto R(c)$
\rightarrow To recognize Écalle's SNF
■ Normal forms for saddle-loops X / Δ

Applications and further work

- Isomodulic deformations $c \mapsto R(c)$
\rightarrow To recognize Écalle's SNF
■ Normal forms for saddle-loops X / Δ
\rightarrow Abstractly X_{R} / Δ is unique modulo $\mathrm{GL}_{2}(\mathbb{C})$

Applications and further work

- Isomodulic deformations $c \mapsto R(c)$
\rightarrow To recognize Écalle's SNF
■ Normal forms for saddle-loops X / Δ
\rightarrow Abstractly X_{R} / Δ is unique modulo $\mathrm{GL}_{2}(\mathbb{C})$
\rightarrow Concrete normal forms embedded in \mathbb{C}^{2} ?

Applications and further work

- Isomodulic deformations $c \mapsto R(c)$
\rightarrow To recognize Écalle's SNF
■ Normal forms for saddle-loops X / Δ
\rightarrow Abstractly X_{R} / Δ is unique modulo $\mathrm{GL}_{2}(\mathbb{C})$
\rightarrow Concrete normal forms embedded in \mathbb{C}^{2} ?
■ Saddle-nodes with only 1 separatrix? $\left(\psi^{0}, \psi^{\infty}\right)$ with ψ^{∞} affine

Applications and further work

- Isomodulic deformations $c \mapsto R(c)$
\rightarrow To recognize Écalle's SNF
■ Normal forms for saddle-loops X / Δ
\rightarrow Abstractly X_{R} / Δ is unique modulo $\mathrm{GL}_{2}(\mathbb{C})$
\rightarrow Concrete normal forms embedded in \mathbb{C}^{2} ?
■ Saddle-nodes with only 1 separatrix? $\left(\psi^{0}, \psi^{\infty}\right)$ with ψ^{∞} affine
\rightarrow Fixed-point method for $N^{ \pm}-\log y \Longrightarrow(\log y)^{n}$ for infinitely many n

Applications and further work

- Isomodulic deformations $c \mapsto R(c)$
\rightarrow To recognize Écalle's SNF
■ Normal forms for saddle-loops X / Δ
\rightarrow Abstractly X_{R} / Δ is unique modulo $\mathrm{GL}_{2}(\mathbb{C})$
\rightarrow Concrete normal forms embedded in \mathbb{C}^{2} ?
■ Saddle-nodes with only 1 separatrix? $\left(\psi^{0}, \psi^{\infty}\right)$ with ψ^{∞} affine
\rightarrow Fixed-point method for $N^{ \pm}-\log y \Longrightarrow(\log y)^{n}$ for infinitely many n
$\rightarrow \psi^{\infty}$ affine \Longrightarrow only $n=1$?

