Spherical normal forms for resonant saddle points in \mathbb{C}^2 Bifurcation of Dynamical Systems and Numerics, Zagreb

Loïc Teyssier (Université de Strasbourg)

May 10^{th} , 2023

Loïc Teyssier (Université de Strasbourg) | May 10th, 2023

4 B 6 4 B 6

Context

Local holomorphic dynamical systems in the complex plane \mathbb{C}^2

Theory and actual computation / decision regarding:

• • = • • = •

Context

Local holomorphic dynamical systems in the complex plane \mathbb{C}^2

Theory and actual computation / decision regarding:

• normal forms of foliations \mathcal{F}_X (=phase-portrait of vector field X)

• • = • • = •

Context

<u>Local</u> holomorphic dynamical systems in the complex plane \mathbb{C}^2

Theory and actual computation / decision regarding:

- normal forms of foliations \mathcal{F}_X (=phase-portrait of vector field X)
- integrability of foliations \mathcal{F}_X (=Liouvillian first-integral for X)

伺 ト イヨ ト イヨト

Reduced singularities

$$X(x,y) = (\lambda_1 x + \cdots) \frac{\partial}{\partial x} + (\lambda_2 y + \cdots) \frac{\partial}{\partial y} , \ \lambda_2 \neq 0$$

Eigenratio $\lambda := \lambda_1 / \lambda_2$

Ξ.

イロト イヨト イヨト イヨト

Reduced singularities

$$X(x,y) = (\lambda_1 x + \cdots) \frac{\partial}{\partial x} + (\lambda_2 y + \cdots) \frac{\partial}{\partial y} , \ \lambda_2 \neq 0$$

Eigenratio $\lambda := \lambda_1 / \lambda_2$

1 $\lambda \notin \mathbb{R} \Longrightarrow X$ linearizable by analytic change of coordinates $(\exists W \in \mathbb{D}; \mathbb{C}(\mathbb{C}^2, 0)) = W^* X = \mathbb{D} W^{-1} (X \in W) = 0$

$$(\exists \Psi \in \text{Diff}(\mathbb{C}^2, 0)) \Psi^* X := \mathsf{D}\Psi^{-1} (X \circ \Psi) = \lambda_1 x \frac{\partial}{\partial x} + \lambda_2 y \frac{\partial}{\partial y}$$

- 4 回 ト 4 回 ト

Reduced singularities

$$X(x,y) = (\lambda_1 x + \cdots) \frac{\partial}{\partial x} + (\lambda_2 y + \cdots) \frac{\partial}{\partial y} , \ \lambda_2 \neq 0$$

Eigenratio $\lambda := \lambda_1 / \lambda_2$

1 $\lambda
otin \mathbb{R} \Longrightarrow X$ linearizable by analytic change of coordinates

$$\left(\exists \Psi \in \operatorname{Diff}\left(\mathbb{C}^{2},0
ight)
ight)\Psi^{*}X := \mathsf{D}\Psi^{-1}\left(X\circ\Psi
ight) = \lambda_{1}xrac{\partial}{\partial x} + \lambda_{2}yrac{\partial}{\partial y}$$

2 $\lambda > 0 \implies X$ conjugate to polynomial vector field (Poincaré-Dulac)

|| 日本 || 日本 || 日本

Reduced singularities

$$X(x,y) = (\lambda_1 x + \cdots) \frac{\partial}{\partial x} + (\lambda_2 y + \cdots) \frac{\partial}{\partial y} , \ \lambda_2 \neq 0$$

Eigenratio $\lambda := \lambda_1 / \lambda_2$

1 $\lambda
otin \mathbb{R} \Longrightarrow X$ linearizable by analytic change of coordinates

$$\left(\exists \Psi \in \operatorname{Diff}\left(\mathbb{C}^{2},0\right)\right)\Psi^{*}X := \mathsf{D}\Psi^{-1}\left(X \circ \Psi\right) = \lambda_{1}x\frac{\partial}{\partial x} + \lambda_{2}y\frac{\partial}{\partial y}$$

2 $\lambda > 0 \implies X$ conjugate to polynomial vector field (Poincaré-Dulac) 3 $\lambda = 0$: saddle-node

伺 ト イヨ ト イヨ ト

Reduced singularities

$$X(x,y) = (\lambda_1 x + \cdots) \frac{\partial}{\partial x} + (\lambda_2 y + \cdots) \frac{\partial}{\partial y} , \ \lambda_2 \neq 0$$

Eigenratio $\lambda := \lambda_1 / \lambda_2$

1 $\lambda \notin \mathbb{R} \Longrightarrow X$ linearizable by analytic change of coordinates

$$\left(\exists \Psi \in \operatorname{Diff}\left(\mathbb{C}^{2},0\right)\right)\Psi^{*}X := \mathsf{D}\Psi^{-1}\left(X \circ \Psi\right) = \lambda_{1}x\frac{\partial}{\partial x} + \lambda_{2}y\frac{\partial}{\partial y}$$

2 $\lambda > 0 \implies X$ conjugate to polynomial vector field (Poincaré-Dulac) 3 $\lambda = 0$: saddle-node

4 $\lambda \in \mathbb{Q}_{<0}$: linearizable or **resonant saddle**

伺 ト イヨ ト イヨ ト

Reduced singularities

$$X(x,y) = (\lambda_1 x + \cdots) \frac{\partial}{\partial x} + (\lambda_2 y + \cdots) \frac{\partial}{\partial y} , \ \lambda_2 \neq 0$$

Eigenratio $\lambda := \lambda_1 / \lambda_2$

1 $\lambda \notin \mathbb{R} \Longrightarrow X$ linearizable by analytic change of coordinates

$$\left(\exists \Psi \in \operatorname{Diff}\left(\mathbb{C}^{2},0\right)\right)\Psi^{*}X := \mathsf{D}\Psi^{-1}\left(X \circ \Psi\right) = \lambda_{1}x\frac{\partial}{\partial x} + \lambda_{2}y\frac{\partial}{\partial y}$$

- 2 $\lambda > 0 \implies X$ conjugate to polynomial vector field (Poincaré-Dulac) 3 $\lambda = 0$: saddle-node
- 4 $\lambda \in \mathbb{Q}_{<0}$: linearizable or **resonant saddle**
- 5 $\lambda \in \mathbb{R}_{<0} \setminus \mathbb{Q}$: quasi-resonant saddles, too complicated

Loïc Teyssier (Université de Strasbourg) \mid May 10 $^{
m th}$, 2023

General aim

Compute simple unique forms (normal forms) for X up to $\Psi \in \mathrm{Diff}\ (\mathbb{C}^2,0)$ and decide if X is integrable

< 同 > < 三 > < 三 >

General aim

Compute simple unique forms (normal forms) for X up to $\Psi \in \operatorname{Diff}(\mathbb{C}^2,0)$ and decide if X is integrable

More modest aim

Describe normal forms, compute their finite jets and semi-decide integrability

• • = • • = •

General aim

Compute simple unique forms (normal forms) for X up to $\Psi\in {
m Diff}\left(\mathbb{C}^2,0
ight)$ and decide if X is integrable

More modest aim

Describe normal forms, compute their finite jets and semi-decide integrability

Actual aim

Do that for reduced singularities

- 4 回 ト 4 回 ト

General aim

Compute simple unique forms (normal forms) for X up to $\Psi \in \mathrm{Diff}\left(\mathbb{C}^2,0\right)$ and decide if X is integrable

More modest aim

Describe normal forms, compute their finite jets and semi-decide integrability

Actual aim

Do that for reduced resonant saddle singularities

(本部) (本語) (本語)

Theorem (Poincaré-Dulac 1904 / Bruno 1980)

Formal normal forms for reduced, resonant singularities $\lambda = -p/q$ with $p \wedge q = 1$ or (p, q) = (0, 1)

$$X \ \widehat{\sim} \ \widehat{X} := P(u) \left(x u^k \frac{\partial}{\partial x} + \left(1 + \mu u^k \right) \left(-p x \frac{\partial}{\partial x} + q y \frac{\partial}{\partial y} \right) \right)$$

(orbital) $k \in \mathbb{Z}_{>0}, \ \mu \in \mathbb{C}$ (temporal) $P \in \mathbb{C}[u]_{\leq k}$

resonant monomial $u = u(x, y) := x^q y^p$

Theorem (Loray 2004 / Schäfke-Teyssier 2015)

Analytic normal forms for saddle-nodes with 2 separatrices

A B + A B +

Theorem (Loray 2004 / Schäfke-Teyssier 2015) Analytic normal forms for saddle-nodes with 2 separatrices Torm unique up to $GL_2(\mathbb{C})$ $X \sim \frac{1}{1+PG} \left(\widehat{X} + Rxy \frac{\partial}{\partial y} \right)$ (orbital) R (temporal) $G \in \mathbb{C} \{yx^{\sigma}\} [x]_{< k}$, $\sigma + \mu \notin \mathbb{R}_{\leq 0}$

伺 ト イヨ ト イヨ ト

Theorem (Loray 2004 / Schäfke-Teyssier 2015) Analytic normal forms for saddle-nodes with 2 separatrices **1** Form unique up to $GL_2(\mathbb{C})$ $X \sim \frac{1}{1+PG} \left(\widehat{X} + Rxy \frac{\partial}{\partial y} \right)$ (orbital) R (temporal) G $\in \mathbb{C} \{yx^{\sigma}\} [x]_{<k}, \sigma + \mu \notin \mathbb{R}_{<0}$ Integrability $\iff R \in y^d \mathbb{C}[x]$ (Bernoulli equation) 2

(目) イヨト イヨト - ヨ

Theorem (Loray 2004 / Schäfke-Teyssier 2015) Analytic normal forms for saddle-nodes with 2 separatrices **1** Form unique up to $GL_2(\mathbb{C})$ $X \sim \frac{1}{1+PG}\left(\widehat{X}+Rxy\frac{\partial}{\partial y}\right)$ (orbital) R (temporal) G $\in \mathbb{C} \{yx^{\sigma}\} [x]_{<k}, \sigma + \mu \notin \mathbb{R}_{<0}$ Integrability $\iff R \in y^d \mathbb{C}[x]$ (Bernoulli equation) 2

Remark

It is possible to compute symbolically finite jets of the normal form, hence integrability is semi-decidable

What is (almost) known

Écalle 2005

There exists a universal family SNF (spherical normal forms), depending on a twist parameter and whose elements are obtained by summing *twisted resurgent monomials*, that is in correspondence with orbital analytic classes of resonant foliations

(E)

What is (almost) known

Écalle 2005

There exists a universal family SNF (spherical normal forms), depending on a twist parameter and whose elements are obtained by summing *twisted resurgent monomials*, that is in correspondence with orbital analytic classes of resonant foliations

Remark

It is not possible to extract from his work an explicit expression for SNF

伺 ト イヨ ト イヨト

What is not known

Remaining difficult cases

Loïc Teyssier (Université de Strasbourg) | May 10th, 2023

・ロト ・四ト ・ ヨト ・ ヨト

What is not known

Remaining difficult cases

 Quasi-resonant saddle points (Loray: simple forms but not unique nor computable)

(E)

What is not known

Remaining difficult cases

- Quasi-resonant saddle points (Loray: simple forms but not unique nor computable)
- Saddles nodes with only 1 separatrix

4 B 6 4 B 6

Hypothesis on X

Hypothesis on X

伺 と く ヨ と く ヨ と

Hypothesis on X

In the rest of the talk 1:1 saddle $X = -x\frac{\partial}{\partial x} + y\frac{\partial}{\partial y} + \cdots \quad \lambda = 1$ non-linearizable and most simple formal model 2 $X \widehat{\sim} x u \frac{\partial}{\partial x} + \left(-x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y} \right) , \ u = xy$ FOL := {all such \mathcal{F}_X }

伺 と く ヨ と く ヨ と .

Quotient $FOL/_{Diff(\mathbb{C}^2,0)}$

2

・ロト ・四ト ・ ヨト ・ ヨト

Spherical normal forms for resonant saddle points in \mathbb{C}^2

Quotient $FOL/_{Diff(\mathbb{C}^2,0)}$

Heuristics

analytic class of \mathcal{F}_X = analytic class of leaf space of \mathcal{F}_X

Loïc Teyssier (Université de Strasbourg) | May 10th, 2023

< ロ > < 同 > < 回 > < 回 > :

2

・ロシ ・ 一 シ ・ ヨ シ ・ モ ラ ・ -

•
$$X = xu\frac{\partial}{\partial x} + \left(-x\frac{\partial}{\partial x} + y\frac{\partial}{\partial y}\right)$$
 has first-integral $H = y \exp \frac{1}{u}$

Loïc Teyssier (Université de Strasbourg) | May 10th, 2023

イロト イボト イヨト イヨト

•
$$X = xu\frac{\partial}{\partial x} + \left(-x\frac{\partial}{\partial x} + y\frac{\partial}{\partial y}\right)$$
 has first-integral $H = y \exp \frac{1}{u}$
• $\stackrel{\text{def}}{\longleftrightarrow} X \cdot H = 0$

Loïc Teyssier (Université de Strasbourg) | May 10th, 2023

イロト イヨト イヨト イヨト

•
$$X = xu\frac{\partial}{\partial x} + \left(-x\frac{\partial}{\partial x} + y\frac{\partial}{\partial y}\right)$$
 has first-integral $H = y \exp \frac{1}{u}$
• $\stackrel{\text{def}}{\longleftrightarrow} X \cdot H = 0$

• \iff H constant along trajectories of X

Loïc Teyssier (Université de Strasbourg) | May 10th, 2023

∃ → < ∃ →</p>

•
$$X = xu\frac{\partial}{\partial x} + \left(-x\frac{\partial}{\partial x} + y\frac{\partial}{\partial y}\right)$$
 has first-integral $H = y \exp \frac{1}{u}$
• $\stackrel{\text{def}}{\longleftrightarrow} X \cdot H = 0$

• \iff H constant along trajectories of X

• \iff each leaf of \mathcal{F}_X is a level set $H^{-1}(h)$

Loïc Teyssier (Université de Strasbourg) | May 10th, 2023

•
$$X = xu\frac{\partial}{\partial x} + \left(-x\frac{\partial}{\partial x} + y\frac{\partial}{\partial y}\right)$$
 has first-integral $H = y \exp \frac{1}{u}$
• $\stackrel{\text{def}}{\longleftrightarrow} X \cdot H = 0$

- \iff H constant along trajectories of X
- \iff each leaf of \mathcal{F}_X is a level set $H^{-1}(h)$
- \iff values h of H parameterize the leaf space Ω_X

•
$$X = xu\frac{\partial}{\partial x} + \left(-x\frac{\partial}{\partial x} + y\frac{\partial}{\partial y}\right)$$
 has first-integral $H = y \exp \frac{1}{u}$
• $\stackrel{\text{def}}{\longleftrightarrow} X \cdot H = 0$

- \iff H constant along trajectories of X
- \iff each leaf of \mathcal{F}_X is a level set $H^{-1}(h)$
- \Longleftrightarrow values h of H parameterize the leaf space Ω_X
- $H(\mathbb{C}^2 \setminus \{u = 0\}) = \mathbb{C}^{\times}$ and $\{u = 0\}$ corresponds to 0, ∞ (non-separable)

■ 2 sectors in *u*-space are needed

< 回 > < 回 > < 回 >

■ 2 sectors in *u*-space are needed

$$V^{\pm} := \left\{ u : \left| \arg u \pm \frac{\pi}{2} \right| < \frac{5\pi}{8} \right\}$$

▲御▶ ▲注▶ ▲注≯

■ 2 sectors in *u*-space are needed

$$V^{\pm} := \left\{ u : \left| \arg u \pm \frac{\pi}{2} \right| < \frac{5\pi}{8} \right\}$$

 X admits first-integrals H[±] = H exp N[±] and H[±] (V[±] × (ℂ, 0)) = ℂ[×] →sectorial normalization

(E)

■ 2 sectors in *u*-space are needed

$$V^{\pm} := \left\{ u : \left| \arg u \pm \frac{\pi}{2} \right| < \frac{5\pi}{8} \right\}$$

- X admits first-integrals H[±] = H exp N[±] and H[±] (V[±] × (ℂ, 0)) = ℂ[×] →sectorial normalization
- a leaf crossing both sectors induces an identification in Ω_X

■ 2 sectors in *u*-space are needed

$$V^{\pm} := \left\{ u : \left| \arg u \pm \frac{\pi}{2} \right| < \frac{5\pi}{8} \right\}$$

- X admits first-integrals H[±] = H exp N[±] and H[±] (V[±] × (ℂ, 0)) = ℂ[×] →sectorial normalization
- a leaf crossing both sectors induces an identification in Ω_X
- ullet that happens in neighborhoods of 0 and ∞

2

・ロト ・四ト ・ ヨト ・ ヨト

Theorem (Martinet-Ramis 1983)

The mapping

$$\begin{split} \mathrm{MR} \; : \; \textit{FOL}/_{\mathrm{Diff}(\mathbb{C}^2, 0)} & \longrightarrow \left(\mathrm{Diff}\left(\mathbb{C}, 0\right)_{\mathrm{Id}} \times \mathrm{Diff}\left(\overline{\mathbb{C}}, \infty\right)_{\mathrm{Id}}\right) /_{\mathbb{Z}/2\mathbb{Z} \times \mathbb{C}^{\times}} \\ & [\mathcal{F}] \longmapsto \left[\left(\psi^0, \psi^\infty\right) \right] \end{split}$$

is well defined and bijective

伺 ト イヨ ト イヨ ト

Theorem (Martinet-Ramis 1983)

The mapping

$$\begin{split} \mathrm{MR} \; : \; \textit{FOL}/_{\mathrm{Diff}(\mathbb{C}^2, 0)} & \longrightarrow \left(\mathrm{Diff}\left(\mathbb{C}, 0\right)_{\mathrm{Id}} \times \mathrm{Diff}\left(\overline{\mathbb{C}}, \infty\right)_{\mathrm{Id}}\right) /_{\mathbb{Z}/2\mathbb{Z} \times \mathbb{C}^{\times}} \\ & [\mathcal{F}] \longmapsto \left[\left(\psi^0, \psi^\infty\right) \right] \end{split}$$

is well defined and bijective

Remark

イロト イボト イヨト イヨト

Theorem (Martinet-Ramis 1983)

The mapping

$$\begin{split} \mathrm{MR} \; : \; \textit{FOL}/_{\mathrm{Diff}(\mathbb{C}^2, 0)} & \longrightarrow \left(\mathrm{Diff}\left(\mathbb{C}, 0\right)_{\mathrm{Id}} \times \mathrm{Diff}\left(\overline{\mathbb{C}}, \infty\right)_{\mathrm{Id}}\right) /_{\mathbb{Z}/2\mathbb{Z} \times \mathbb{C}^{\times}} \\ & [\mathcal{F}] \longmapsto \left[\left(\psi^0, \psi^\infty\right) \right] \end{split}$$

is well defined and bijective

Remark

1 $\mathbb{Z}/2\mathbb{Z} imes \mathbb{C}^{ imes} \supset \mathsf{Aut}\left(\Omega_X\right)$ as an abstract non-Hausdorff complex curve

3

Theorem (Martinet-Ramis 1983)

The mapping

$$\begin{split} \mathrm{MR} \; : \; \textit{FOL}/_{\mathrm{Diff}(\mathbb{C}^2, 0)} & \longrightarrow \left(\mathrm{Diff}\left(\mathbb{C}, 0\right)_{\mathrm{Id}} \times \mathrm{Diff}\left(\overline{\mathbb{C}}, \infty\right)_{\mathrm{Id}}\right) /_{\mathbb{Z}/2\mathbb{Z} \times \mathbb{C}^{\times}} \\ & [\mathcal{F}] \longmapsto \left[\left(\psi^0, \psi^\infty\right) \right] \end{split}$$

is well defined and bijective

Remark

Z/2Z × C[×] ⊃ Aut (Ω_X) as an abstract non-Hausdorff complex curve
 Well-defined and injective: relatively easy

3

Theorem (Martinet-Ramis 1983)

The mapping

$$\begin{split} \mathrm{MR} \; : \; \textit{FOL}/_{\mathrm{Diff}(\mathbb{C}^2, 0)} & \longrightarrow \left(\mathrm{Diff}\left(\mathbb{C}, 0\right)_{\mathrm{Id}} \times \mathrm{Diff}\left(\overline{\mathbb{C}}, \infty\right)_{\mathrm{Id}}\right) /_{\mathbb{Z}/2\mathbb{Z} \times \mathbb{C}^{\times}} \\ & [\mathcal{F}] \longmapsto \left[\left(\psi^0, \psi^\infty\right) \right] \end{split}$$

is well defined and bijective

Remark

 $\blacksquare \ \mathbb{Z}/2\mathbb{Z}\times\mathbb{C}^{\times}\supset \mathsf{Aut}\left(\Omega_{X}\right) \text{ as an abstract non-Hausdorff complex curve}$

- 2 Well-defined and injective: relatively easy
- 3 Surjective: difficult \rightarrow inverse problem

3

2

イロト イヨト イヨト イヨト

1 We start with $\overline{\mathbb{C}} \coprod \overline{\mathbb{C}}/_{(\psi^0,\psi^\infty)}$, to be synthesized

2

イロン イヨン イヨン -

- We start with C ∐ C/(ψ⁰, ψ∞), to be synthesized
 We equip V[±] := V[±] × (C, 0) with xu∂/∂x + (-x∂/∂x + y∂/∂y) and the leaf coordinate h ↔ H = y exp 1/u
- 3 The manifold $\mathcal M$ is obtained by gluing $\mathcal V^+$ and $\mathcal V^-$ in *h*-space by $\left(\psi^0,\psi^\infty\right)$

- We start with C ∐ C/(ψ⁰,ψ[∞]), to be synthesized
 We equip V[±] := V[±] × (C, 0) with xu∂/∂x + (-x∂/∂x + y∂/∂y) and the leaf coordinate h ↔→ H = y exp 1/μ
- 3 The manifold $\mathcal M$ is obtained by gluing $\mathcal V^+$ and $\mathcal V^-$ in *h*-space by $\left(\psi^0,\psi^\infty\right)$
- 4 $\Longrightarrow \mathcal{M}$ is foliated by some \mathcal{F}

- 1 We start with $\overline{\mathbb{C}} \coprod \overline{\mathbb{C}}/_{(\psi^0,\psi^\infty)}$, to be synthesized
- 2 We equip $\mathcal{V}^{\pm} := V^{\pm} \times (\mathbb{C}, 0)$ with $xu\frac{\partial}{\partial x} + \left(-x\frac{\partial}{\partial x} + y\frac{\partial}{\partial y}\right)$ and the leaf coordinate $h \leftrightarrow H = y \exp \frac{1}{u}$
- 3 The manifold ${\cal M}$ is obtained by gluing ${\cal V}^+$ and ${\cal V}^-$ in *h*-space by $\left(\psi^0,\psi^\infty\right)$
- 4 $\Longrightarrow \mathcal{M}$ is foliated by some \mathcal{F}
- 5 Newlander-Niremberg: $\mathcal{M}\simeq \left(\mathbb{C}^2,0
 ight)$, and $\mathcal{F}\in\mathsf{FOL}$

Technical points

Technical points

• "The manifold \mathcal{M} is obtained by gluing \mathcal{V}^+ and \mathcal{V}^- in *h*-space by (ψ^0, ψ^∞) "

< 回 > < 回 > < 回 >

Technical points

■ "The manifold *M* is obtained by gluing *V*⁺ and *V*⁻ in *h*-space by (ψ⁰, ψ[∞])"

 \longrightarrow Need to control the size of $H\left(\mathcal{V}^+ \cap \mathcal{V}^ight)$

伺 ト イヨ ト イヨト

Technical points

- "The manifold \mathcal{M} is obtained by gluing \mathcal{V}^+ and \mathcal{V}^- in h-space by (ψ^0,ψ^∞) "
 - $\begin{array}{l} \longrightarrow \ {\sf Need to control the size of } H\left(\mathcal{V}^+ \cap \mathcal{V}^-\right) \\ \longrightarrow \ {\sf Constraint on the size of } \mathcal{V}^+ \cap \mathcal{V}^- \cap \left(\mathbb{C}^2, 0\right) \end{array}$

伺 ト イヨ ト イヨト

Technical points

- "The manifold \mathcal{M} is obtained by gluing \mathcal{V}^+ and \mathcal{V}^- in *h*-space by (ψ^0,ψ^∞) "
 - $\begin{array}{l} \longrightarrow \ {\sf Need to control the size of } H\left(\mathcal{V}^+ \cap \mathcal{V}^-\right) \\ \longrightarrow \ {\sf Constraint on the size of } \mathcal{V}^+ \cap \mathcal{V}^- \cap \left(\mathbb{C}^2, 0\right) \end{array}$
- 'Newlander-Niremberg: $\mathcal{M} \simeq (\mathbb{C}^2, 0)$, and $\mathcal{F} \in \mathsf{FOL}$ "

Technical points

- "The manifold \mathcal{M} is obtained by gluing \mathcal{V}^+ and \mathcal{V}^- in *h*-space by (ψ^0,ψ^∞) "
 - $\begin{array}{l} \longrightarrow \ {\sf Need to control the size of } H\left(\mathcal{V}^+ \cap \mathcal{V}^-\right) \\ \longrightarrow \ {\sf Constraint on the size of } \mathcal{V}^+ \cap \mathcal{V}^- \cap \left(\mathbb{C}^2, 0\right) \end{array}$
- 'Newlander-Niremberg: $\mathcal{M}\simeq (\mathbb{C}^2,0)$, and $\mathcal{F}\in\mathsf{FOL}$ "

 \rightarrow No control on the «shape» of \mathcal{F}

Technical points

- "The manifold \mathcal{M} is obtained by gluing \mathcal{V}^+ and \mathcal{V}^- in h-space by (ψ^0,ψ^∞) "
 - $\begin{array}{l} \longrightarrow \ {\sf Need to control the size of } H\left(\mathcal{V}^+ \cap \mathcal{V}^-\right) \\ \longrightarrow \ {\sf Constraint on the size of } \mathcal{V}^+ \cap \mathcal{V}^- \cap \left(\mathbb{C}^2, 0\right) \end{array}$
- 'Newlander-Niremberg: $\mathcal{M} \simeq (\mathbb{C}^2, 0)$, and $\mathcal{F} \in \mathsf{FOL}$ "
 - \rightarrow No control on the «shape» of \mathcal{F}
 - \rightarrow No privileged choice (normal form)

Remedies

■ Introduce a twist parameter $c \gg 1$ to control $H(\mathcal{V}^+ \cap \mathcal{V}^-)$ and change the formal model:

$$X_0 := xurac{\partial}{\partial x} + c\left(1-u^2
ight)\left(-xrac{\partial}{\partial x} + yrac{\partial}{\partial y}
ight)$$

$$H = y \exp\left(\frac{c}{u} + cu\right)$$
 diam $\left(H\left(\mathcal{V}^+ \cap \mathcal{V}^-\right)\right) = O\left(e^{-c}\right)$

御下 くぼと くぼと

Remedies

■ Introduce a twist parameter $c \gg 1$ to control $H(\mathcal{V}^+ \cap \mathcal{V}^-)$ and change the formal model:

$$X_0 := xu rac{\partial}{\partial x} + c \left(1 - u^2\right) \left(-x rac{\partial}{\partial x} + y rac{\partial}{\partial y}
ight)$$

$$H = y \exp\left(\frac{c}{u} + cu\right)$$
 diam $\left(H\left(\mathcal{V}^+ \cap \mathcal{V}^-\right)\right) = O\left(e^{-c}\right)$

A holomorphic fixed-point allows to control the produced foliation

A B + A B +

1 Let $(\psi^0, \psi^\infty) \in \text{Diff}(\mathbb{C}, 0)_{\text{Id}} \times \text{Diff}(\mathbb{C}, 0)_{\text{Id}}$ be given. Choose c so that $H(\mathcal{V}^+ \cap \mathcal{V}^-) \subset \text{domain}(\psi^{0,\infty})$

伺 と く ヨ と く ヨ と

- **1** Let $(\psi^0, \psi^\infty) \in \text{Diff}(\mathbb{C}, 0)_{\text{Id}} \times \text{Diff}(\mathbb{C}, 0)_{\text{Id}}$ be given. Choose c so that $H(\mathcal{V}^+ \cap \mathcal{V}^-) \subset \text{domain}(\psi^{0,\infty})$
- 2 Synthesize by fixed-point N^{\pm} bounded on $V^{\pm} imes \mathbb{C}$ so that

$$\begin{cases} H^+ &= \Psi^0 \left(H^- \right) \\ H^- &= \Psi^\infty \left(H^+ \right) \end{cases} \quad H^\pm = H \exp N^\pm \end{cases}$$

(*) * (*) *)

- 1 Let $(\psi^0, \psi^\infty) \in \text{Diff}(\mathbb{C}, 0)_{\text{Id}} \times \text{Diff}(\mathbb{C}, 0)_{\text{Id}}$ be given. Choose c so that $H(\mathcal{V}^+ \cap \mathcal{V}^-) \subset \text{domain}(\psi^{0,\infty})$
- 2 Synthesize by fixed-point N^{\pm} bounded on $V^{\pm} imes \mathbb{C}$ so that

$$egin{cases} H^+ &= \Psi^0 \left(H^-
ight) \ H^- &= \Psi^\infty \left(H^+
ight) \ \end{pmatrix} \hspace{1.5cm} H^\pm = H \exp N^\pm$$

3 Recover

$$R := \frac{xu\frac{\partial}{\partial x}N^{\pm}}{1 + \left(-x\frac{\partial}{\partial x} + y\frac{\partial}{\partial y}\right)N^{\pm}} \in \mathbb{C}\left\{u, y\right\}$$

- 1 Let $(\psi^0, \psi^\infty) \in \text{Diff}(\mathbb{C}, 0)_{\text{Id}} \times \text{Diff}(\mathbb{C}, 0)_{\text{Id}}$ be given. Choose c so that $H(\mathcal{V}^+ \cap \mathcal{V}^-) \subset \text{domain}(\psi^{0,\infty})$
- 2 Synthesize by fixed-point N^{\pm} bounded on $V^{\pm} imes \mathbb{C}$ so that

$$egin{cases} H^+ &= \Psi^0\left(H^-
ight) \ H^- &= \Psi^\infty\left(H^+
ight) \ \end{pmatrix} \ H^\pm = H \exp N^\pm$$

3 Recover

$$R := \frac{xu\frac{\partial}{\partial x}N^{\pm}}{1 + \left(-x\frac{\partial}{\partial x} + y\frac{\partial}{\partial y}\right)N^{\pm}} \in \mathbb{C}\left\{u, y\right\}$$

4 Bounds on growth \implies $R = uy (r_0 (y) + ur_1 (y))$ for $r_j \in \mathbb{C} \{y\}$

伺 ト イヨ ト イヨ ト

Theorem (Teyssier 2022) Let $\mathcal{F}_X \in FOL$ be given.

伺 ト イヨ ト イヨト

Theorem (Teyssier 2022) Let $\mathcal{F}_{\mathbf{X}} \in FOL$ be given. 1 Form unique up to $GL_2(\mathbb{C})$ $X \sim \frac{1}{1+G} \left(x u \frac{\partial}{\partial x} + (c (1-u^2) + R) \left(-x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y} \right) \right)$ (orbital) R (temporal) $G \in uy\mathbb{C}\{y\}[u]_{<1}$

Loïc Teyssier (Université de Strasbourg) | May 10th, 2023

伺 ト イヨ ト イヨ ト

Theorem (Teyssier 2022) Let $\mathcal{F}_{\mathbf{X}} \in FOL$ be given. **1** Form unique up to $GL_2(\mathbb{C})$ $X \sim \frac{1}{1+G} \left(x u \frac{\partial}{\partial x} + (c (1-u^2) + R) \left(-x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y} \right) \right)$ (orbital) R (temporal) $G \in uy\mathbb{C}\{y\}[u]_{<1}$ 2 Integrability $\iff R \in y^d \mathbb{C}[u]_{<1}$ (Bernoulli equation)

・四・・ モン・ ・ ヨン

Remark

Remark

1 Normal form defined on $\overline{\mathbb{C}} \times (\mathbb{C}, 0)$: semi-global

Analytic «spherical» normal forms

Remark

- **1** Normal form defined on $\overline{\mathbb{C}} \times (\mathbb{C}, 0)$: semi-global
- 2 Finite jets are computable ==> integrability is semi-decidable

Analytic «spherical» normal forms

Remark

- **1** Normal form defined on $\overline{\mathbb{C}} \times (\mathbb{C}, 0)$: semi-global
- 2 Finite jets are computable ==> integrability is semi-decidable

3 Triangular process, computable symbolically for all *n*

$$X_{\text{prepared}} = xu\frac{\partial}{\partial x} + (1 + uyA(x, y))\left(-x\frac{\partial}{\partial x} + y\frac{\partial}{\partial y}\right)$$
$$X_R = xu\frac{\partial}{\partial x} + (c(1 - u^2) + uyR(u, y))\left(-x\frac{\partial}{\partial x} + y\frac{\partial}{\partial y}\right)$$
$$A = \sum_n a_n(x)y^n \longmapsto R = \sum_n (\alpha_n + \beta_n u)y^n$$

Loïc Teyssier (Université de Strasbourg) | May 10th, 2023

•
$$X_{\text{spherical}} = \frac{1}{1+G}X_R$$
 but so far only UX_R

Loïc Teyssier (Université de Strasbourg) \mid May 10 $^{
m th}$, 2023

イロト イヨト イヨト イヨト

•
$$X_{\text{spherical}} = \frac{1}{1+G} X_R$$
 but so far only UX_R
• Going from UX_R to $\frac{1}{1+G} X_R$ by $\Phi_{X_R}^T$:

$$X_R \cdot T = G + 1 - \frac{1}{U}$$

Loïc Teyssier (Université de Strasbourg) \mid May 10 $^{
m th}$, 2023

イロト イヨト イヨト イヨト

•
$$X_{\text{spherical}} = \frac{1}{1+G} X_R$$
 but so far only UX_R
• Going from UX_R to $\frac{1}{1+G} X_R$ by $\Phi_{X_R}^T$:

$$X_R \cdot T = G + 1 - \frac{1}{U}$$

Proposition (Period operator and cohomological equations)

- 4 回 ト 4 回 ト

•
$$X_{\text{spherical}} = \frac{1}{1+G} X_R$$
 but so far only UX_R
• Going from UX_R to $\frac{1}{1+G} X_R$ by $\Phi_{X_R}^T$:

$$X_R \cdot T = G + 1 - \frac{1}{U}$$

Proposition (Period operator and cohomological equations) Formal action

$$\mathbb{C} \xrightarrow{cst} \mathbb{C}[[x,y]] \xrightarrow{X_R} \mathbb{C}[[x,y]] \xrightarrow{\Pi} \mathbb{C}[u]_{\leq 1}$$

• • = • • = •

• $X_{\text{spherical}} = \frac{1}{1+G}X_R$ but so far only UX_R • Going from UX_R to $\frac{1}{1+G}X_R$ by $\Phi_{X_R}^T$:

$$X_R \cdot T = G + 1 - \frac{1}{U}$$

Proposition (Period operator and cohomological equations) Analytic action

$$\mathbb{C} \xrightarrow{cst} \mathbb{C} \{x, y\} \xrightarrow{X_R} \ker \Pi \xrightarrow{\mathfrak{T}_R} h\mathbb{C} \{h\} \times \frac{1}{h}\mathbb{C} \{\frac{1}{h}\}$$
Period operator $\mathfrak{T}_R(f) = (\varphi^0, \varphi^\infty)$

高 ト イヨ ト イヨ ト

• $X_{\text{spherical}} = \frac{1}{1+G} X_R$ but so far only UX_R • Going from UX_R to $\frac{1}{1+G} X_R$ by $\Phi_{X_R}^T$:

$$X_R \cdot T = G + 1 - \frac{1}{U}$$

Proposition (Period operator and cohomological equations) Any $f \in \mathbb{C} \{x, y\}$ writes uniquely as

$$f = P + G + X_R \cdot F , \quad \begin{cases} P \in \mathbb{C} [u]_{\leq 1} \\ G \in yu\mathbb{C} \{y\} [u]_{\leq 1} \\ F \in \mathbb{C} \{x, y\} \end{cases}$$

Isomodulic deformations $c \mapsto R(c)$

- 4 回 ト - 4 回 ト

Isomodulic deformations $c \mapsto R(c)$

ightarrow To recognize Écalle's SNF

伺 ト イヨ ト イヨト

- Isomodulic deformations c → R(c)
 → To recognize Écalle's SNF
- Normal forms for saddle-loops X/Δ

ヨン イヨン

- Isomodulic deformations c → R(c)
 → To recognize Écalle's SNF
- Normal forms for saddle-loops X/Δ
 - ightarrow Abstractly X_R/Δ is unique modulo ${
 m GL}_2\left(\mathbb{C}
 ight)$

- Isomodulic deformations $c\mapsto R\left(c
 ight)$
 - ightarrow To recognize Écalle's SNF
- Normal forms for saddle-loops X/Δ
 - ightarrow Abstractly X_R/Δ is unique modulo ${\sf GL}_2\left(\mathbb{C}
 ight)$
 - ightarrow Concrete normal forms embedded in \mathbb{C}^2 ?

- Isomodulic deformations $c\mapsto R\left(c
 ight)$
 - ightarrow To recognize Écalle's SNF
- Normal forms for saddle-loops X/Δ
 - ightarrow Abstractly X_R/Δ is unique modulo ${\sf GL}_2\left(\mathbb{C}
 ight)$
 - ightarrow Concrete normal forms embedded in $\mathbb{C}^2?$

Saddle-nodes with only 1 separatrix? (ψ^0,ψ^∞) with ψ^∞ affine

- Isomodulic deformations $c \mapsto R(c)$
 - \rightarrow To recognize Écalle's SNF
- Normal forms for saddle-loops X/Δ
 - ightarrow Abstractly X_R/Δ is unique modulo ${\sf GL}_2\left(\mathbb{C}
 ight)$
 - ightarrow Concrete normal forms embedded in $\mathbb{C}^2?$
- **s** Saddle-nodes with only 1 separatrix? $(\psi^{\mathsf{0}},\psi^{\infty})$ with ψ^{∞} affine
 - \rightarrow Fixed-point method for $N^{\pm} \log y \Longrightarrow (\log y)^n$ for infinitely many n

- Isomodulic deformations $c \mapsto R(c)$
 - \rightarrow To recognize Écalle's SNF
- Normal forms for saddle-loops X/Δ
 - ightarrow Abstractly X_R/Δ is unique modulo ${\sf GL}_2\left(\mathbb{C}
 ight)$
 - ightarrow Concrete normal forms embedded in $\mathbb{C}^2?$
- Saddle-nodes with only 1 separatrix? (ψ^0,ψ^∞) with ψ^∞ affine
 - \rightarrow Fixed-point method for $N^{\pm} \log y \Longrightarrow (\log y)^n$ for infinitely many n
 - $\rightarrow \psi^{\infty}$ affine \Longrightarrow only n = 1?